

- Population vs. patient
 - Antimicrobial stewardship: prevent development/promotion of resistant bacteria
 - Need effective antibiotics if resistant bacteria causing infection
- Need not be mutually exclusive

WHO Establishes Priority Level for Resistant Gram-Negative Bacteria (2017)

Priority 1: CRITICAL

.

- Acinetobacter baumannii, carbapenem-resistant
 - Pseudomonas aeruginosa, carbapenem-resistant
- Enterobacteriaceae*, carbapenem-resistant
- Enterobacteriaceae*, 3rd-generation cephalosporin-resistant

World Health Organization

"Enterobacteriaceae include K pneumoniae, E. coli, Enterobacter spp., Serratia spp., Proteus spp., Providencia spp., Morganella spp. WHO. Available at: http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacterialen/.

Classes of β-Lactamases in Gram-Negative Bacteria				
Ambler Classification	Description or Characteristics	Examples of Enzymes	Bacterial Strains	
Class A (serine β-lactamase)	Cephalosporinases (ESBLs) Usually clavulanic acid susceptible, except for KPC	TEM, SHV, CTX-M, <u>KPC,</u> VEB	Enterobacteriaceae Pseudomonas spp.	
Class B (metallo-β-lactamase or MBL)	Contain metal ion (Zn) Carbapenemases Not inhibited by clavulanic acid Inhibited by aztreonam	IMP, VIM, NDM	Enterobacteriaceae Acinetobacter spp. Pseudomonas spp	
Class C (AmpC β-lactamase – serine β- lactamase)	Resistant to clavulanic acid Intrinsic in certain species of Gram-negatives	CMY, DHA	Enterobacteriaceae Pseudomonas spp	
Class D (serine β-lactamase)	Oxacillinases Susceptible to clavulanic acid Carbapenemase	OXA	Enterobacteriaceae (OXA-48 like), Acinetobacter spp.	

Mountain (n=1,022)	W N Central (n=1,573)	E N Central (n=2,434)	New England (n=893)
FQ = 26.8%	FQ = 28.4%	FQ = 34.9%	FQ = 26.6%
Carbapenem = 16.5%	Carbapenem = 20.2%	Carbapenem = 27.7%	Carbapenem = 23.6%
ES Ceph = 22.6%	ES Ceph = 24.8%	ES Ceph = 26.3%	ES Ceph = 20.3%
PIP = 18.7%	PIP = 24.4%	PIP = 22.7%	PIP = 17.0%
MDR =13.6%	MDR = 16.7%	MDR = 23.5%	MDR = 15.6%
Pacific (n=2,518) FQ = 42.4% Carbapenem = 34.7% ES Ceph = 31.9% PIP = 30.6% MDR = 29.7%	Antimicrobi P. aeru (blod and 2009-	al-Resistant ginosa respiratory) -2013	Mid Atlantic (n=1,987) FQ =33.7% Carbapenem = 26.3% ES Coph = 28.4% MDR = 22.6% MDR = 23.4% FQ = 38.5% Carbapenem = 30.1% ES Coph = 25.3% PM = 23.3%
National (n=20,134)	W S Central (n=2,865)	E S Central (n=1,799)	VA Healthcare System Data.
FQ = 35.5%	FQ = 31.3%	FQ = 41.1%	
Carbapenem = 26.9%	Carbapenem = 22.5%	Carbapenem = 29.0%	
ES Ceph = 26.5%	ES Ceph = 25.9%	ES Ceph = 27.2%	
PIP = 23.8%	PIP = 22.7%	PIP = 25.7%	
MDR = 22.1%	MDR = 20.4 %	MDR =23.2%	

Antimicrobial-Resistant P. aeruginosa,
All HAIs 2011–2014

Resistance type	Overall	2011	2012	2013	2014
Carbapenem (N=22,593)	19.3%	20.0%	17.8%	20.4%	19.2%
Cephalosporin (N=26,772)	10.3%	11.7%	9.9%	10.8%	9.5%
Fluoroquinolone (N=26,897)	21.6%	23.5%	20.8%	22.3%	20.7%
Aminoglycoside (N=27,197)	9.7%	10.6%	9.1%	9.8%	9.6%
Piperacillin/ tazobactam (N=23,662)	10.0%	12.8%	10.0%	10.1%	9.0%
Multidrug-Resistant (N=27,289)	14.2%	15.7%	13.3%	14.8%	13.5%

Patient Case: Mr. Z

CC: 76-year-old man residing in LTCF with a history of complicated UTIs presents to the ED complaining of painful urination and slight hematuria

HPI: April 10th hospitalization for UTI. No indwelling urinary catheter present, patient performs self-catheterization

PMHx: Diabetes, PVD, prostrate CA **ROS:** Fever 38.9°C (102.2°F); WBC 18K **PE:** Acute costovertebral angle pain

Patient Case: Mr. Z (cont'd)

- Management plan:
- Patient is empirically given imipenem 500 mg IV q6h
- New information:
 - AMS Team reviews records from his last admission (~30 days prior); urine culture grew *P. aeruginosa,* previously treated with IV then PO levofloxacin 750 mg × 10 days (4/10 to 4/20/2017)
 - Blood and urine culture from current admission shows Gram-negative rods

Mazuski JE, et al. The Surgical Infection Society Revised Guidelines on the Management of Intra-Abdominal Infectior Surg Infect (Larchmt). 2017;18:1-76.

Risk Factors for Infection with MDR Gram-Negative Pathogens

Over Half of *P. aeruginosa* Isolates **Non-susceptible to Pip-Tazo Also Non-susceptible to a Carbapenem**

	Pip-Tazo (% PTZ-NS)	Meropenem (% MER-NS)	MDR (% of PTZ-NS also MER-NS)
New England	19	17	44
Mid-Atlantic	27	20	52
East North Central	21	18	51
West North Central	14	10	50
South Atlantic	25	20	49
East South Central	22	18	57
West South Central	26	25	68
Mountain	22	25	64
Pacific	20	12	40

NEWER ANTIMICROBIAL AGENTS IN THE MANAGEMENT OF INFECTIONS CAUSED **BY MULTIDRUG-RESISTANT GRAM-NEGATIVE BACTERIA**

Gram-regative Dacterra				
Antibiotic	Class (Mechanism of action)	Status	Spectrum of Activity	
Ceftolozane- tazobactam	Anti-pseudomonal cephalosporin/BLI combination Tazobactam active against penicillinases & cephalosporinases	Approved: • cUTI, including pyelonephritis • cIAI (with metronidazole)	Gram-negatives, including MDR <i>P. aeruginosa</i> and ESBL- producing strains	
Ceftazidime- avibactam	Anti-pseudomonal cephalosporin/BLI combination	Approved: • cUTI, including pyelonephritis • cIAI (with metronidazole)	Gram-negatives, including MDR <i>P. aeruginosa</i> , ESBL- producing strains, KPCs	

her et al. Clin Infect Dis 2013;56:1685–94.

Cefto	lozane-Tazobactam (ZERBAXA®)
Class/MOA	Novel cephalosporin/established β-lactamase inhibitor combination
Approval	Complicated urinary tract infections (cUTIs), including pyelonephritis Complicated intra-abdominal infections (cIAIs)
Investigational	 Ventilator-associated bacterial pneumonia (VABP) and ventilated hospital-acquired bacterial pneumonia (HABP) with dose of 3 g q8h (2000 mg cettolozane and 1000 mg tazobactam)
Dose & Adjustment*	 cUTIs dose: 1.5 g q8h (1000 mg ceftolozane and 500 mg tazobactam) cIAIs dose 1.5 g q8h (1000 mg ceftolozane and 500 mg tazobactam) plus meropenem 500 mg q8h
Spectrum	Activity against multidrug-resistant Gram-negative bacilli. Tazobactam extends the activity to include most ESBLs & anaerobic species Potent activity versus <u>Pseudomonas aeruginosa</u> , including drug- resistant phenotypes such as carbapenem, piperacillin/tazobactam, and certazidime-resistant isolates, as well as MDR strains
Does not cover	MSSA, MRSA, enterococcus
*Label includes a w ZERBAXA® (ceftolo www.clinical trials.c	

Ceftolo Activity A	zane-Taz Against <i>P</i>	zobactan ? <i>aerugin</i>	1: cosa
 Demonstrated in vitr tested that had: Chromosomal AmpC or Loss of outer membran Up-regulation of efflux p Not active against background the second second	o activity aga r le porin (OprD) <i>or</i> pumps (MexXY, M acteria produc susceptibility int	inst <i>Ρ. aerugir</i> ^{exAB)} cing metallo-β ærpretive criteria	losa isolates -lactamases
	Minimum Inhi	bitory Concentra	tions (µg/mL)
Pathogen	Susceptible (S)	Intermediate (I)	Resistant (R)
Pseudomonas aeruginosa	≤4 / 4*	8 / 4*	≥16 / 4*
*Ceftolozane-tazobactam susceptibility t Takeda S, et al. Int J Antimicrob Agents. 2007 Takeda S, et al. Antimicrob Agents Chemothe Castanheira M. et al. Antimicrob Agents Chemothe	r;30:443-445. er. 2007;51:826-830. mother. 2014;58:6844-685	fixed 4 µg/mL concentrati 0.	ion of tazobactam

am:	In Vi	itro A	Activity
ted agai th pneu	nst <i>P. ae</i> monia <mark>(L</mark>	ruginos ISA - 201	a isolates 2)
Cumula at MI	tive (%) ir IC in µg/m	hibited	MIC ₅₀ / MIC ₉₀
4	8	16	(µg/mL)
92.6	94.1	94.6	0.5 / 4
72.1	77.7	79.6	4 / >32
70.7	77.0	79.1	4 / >32
75.7	78.0	79.9	2/>32
76.5	81.4	83.0	2/>32
60.1	63.9	67.1	4/>32
81.4	82.7	84.4	2/>32
71.6	73.1	75.1	2/>32
72.4	75.6	77.6	2/>32
63.2	66.1	69.0	4/>32
	ed agai ch pneu Cumula at M 92.6 72.1 70.7 75.7 76.5 60.1 81.4 71.6 72.4 63.2	am: In Vi ed against P. ae ch pneumonia (U Cumulative (V) in at MIC in 1907 4 8 92.6 94.1 72.1 77.7 70.7 77.0 75.7 78.0 76.5 81.4 60.1 63.9 81.4 82.7 71.6 73.1 72.4 75.6 63.2 66.1	am: In Vitro A ed against P. aeruginoss, ch pneumonia (USA - 201 Cumulative (%) inhibited at MIC in µg/mL of: 4 8 16 92.6 94.1 94.6 72.1 77.7 79.6 70.7 77.0 79.1 75.7 78.0 79.9 76.5 81.4 83.0 60.1 63.9 67.1 81.4 82.7 84.4 71.6 73.1 75.6 72.4 75.6 77.6 63.2 66.1 69.0

Phase 3 Clinical Trials:	
Ceftolozane-Tazobactam for cUTIs	

- Primary endpoint composite of microbiological eradication and clinical cure rate (composite cure rate) at 5–9 days after end of therapy—TOC visit.
- Of 1083 patients enrolled, 800 (73.9%), of whom 656 (82.0%) had <u>pyelonephritis</u>, were included in the microbiological MITT population. .

cUTI treatment	Ceftolozane- tazobactam 1.5g q8h	Levofloxacin 750mg q24h	Difference
microbiological modified intent-to- treat patients	76.9%	68.4%	8.5%; 95% CI, 2.3–14.6*
microbiologically evaluable patients	83.3%	75.4%	8%; 95% CI, 2–14*

*"as the lower bound of the two-sided 95% CI around the treatment difference was positive and greater than zero, superiority was indicated"

Wagenlehner FM, et al. Lancet. 2015;385:1949-56.

Class/MOA	Established cephalosporin/novel non-beta-lactam beta- lactamase inhibitor
Approval *Based upon two Phase 2 trials	Complicated urinary tract infections (cUTIs) Complicated intra-abdominal infections (cIAIs) "New treatment for serious infections in patients who have limited or no alternative treatment options "
Investigational	 Nosocomial pneumonia, including those with ventilator-associated pneumonia with dose of 2.5 g q8h (2000 mg cettazidime and 500 mg avibactam
Dose & Adjustments*	cUTI: 2.5 g q8h (2000 mg ceftazidime and 500 mg avibactam) cIAI: 2.5 g q8h (with metronidazole)
Spectrum	Gram-negative infections, including extended-spectrum beta-lactamases (ESBLs; Ambler class A, B, C, and D) and <u>Klebsiella pneumoniae</u> <u>carbapenemases (KPCs)</u> , including CTX-M types
Does not cover	MRSA, MSSA, enterococcus
Safety	The most common adverse reactions (incidence of >10% in either indication) were vomiting, nausea, constipation, and anxiety
Monitoring	Monitor CrCl at least daily in patients with changing renal function and adjust dose accordingly
Label includes a warn	ing about decreased efficacy seen in patients with renal impairment.

Ceftazid Activity Ag	lime-Avibac gainst <i>P. aeri</i>	tam: uginosa		
Demonstrated in vitro activ some AmpC beta-lactama certain strains lacking out Not active against bacteria have activity against Gram pumps or have porin muta Current FDA susceptibility interestion	vity against <i>P. aerugino</i> ases or ter membrane porin (Oprl a producing metallo-β-la n-negative bacteria that tions erpretive criteria:	sa in the presence of:) actamases and may not overexpress efflux		
	Minimum Inhibitory Co	oncentrations (µg/mL)		
Pathogen	Susceptible (S)	Resistant (R)		
Pseudomonas aeruginosa Enterobacteriaceae ≤8 / 4* ≥16 / 4*				
* Ceftazidime-avibactam susceptibility tes AVYCAZ® (ceftazidime and avibactam) Prescribi	sting performed with a fixed 4 µg/	'mL concentration of avibactam		

Ceftazidime-Avibactam: In Vitro Activity

Ceftazidime-avibactam activity tested against P. aeruginosa isolates from patients hospitalized in USA (2012-2013)

Cumulative (%) inhibited at MIC in µg/mL of:		MIC ₅₀ / MIC ₉₀	
8	16	(=,64)	
97.0	99.0	2/4	
97.5	99.2	2/4	
95.6	98.3	2/4	
97.3	100.0	2/4	
80.7	93.4	4 / 16	
87.0	95.3	4 / 16	
80.7	93.1	4/16	
74.5	89.1	8/32	
	inhit at MIC in 8 97.0 97.5 95.6 97.3 80.7 87.0 80.7 87.0 80.7 74.5	inhibited at MIC in µg/mL of: 8 16 97.0 99.0 97.5 99.2 95.6 98.3 97.3 100.0 80.7 93.4 87.0 95.3 80.7 93.1 74.5 89.1	

Ceftazidime-Avibactam: Phase II Trial Results, cUTIs Microbiological Response for cUTIs² (Phase II trial; N=62 in ME Population) 3rd-generation antipseudomonal cephalosporin, non-beta-lactam beta-. lactamase inhibitor1 85 Inhibits Ambler class A, C and some D Ceftazidime-avibad (500/125 mg q8h) beta-lactamases (ESBL, AmpC, KPC) Extends spectrum to include most Enterobacteriaceae including AmpC, SERL KPC and OVA-tune 80 Imipenem-cilas (500 mg q6h) Cured 22 ESBL, KPC and OXA-type carbapenemases; *P. aeruginosa* with high MICs to ceftazidime % Patients 0 68 60 NOT active against Acinete metallo-beta-lactamases cter or 55 Ma:3 Indications: cIAI, cUTI¹ 50 Efficacy may be less with renal impairment (est CrCl <50 mL/min) *Response seen in 6/7 (85.7%) with ceftazidime-resistant pathogens ation. Allergan USA, Inc., Irvine, CA. January 2017. 1. AVYCA2[®] (ceftazidime and avibactam) Prescribing Inforr 2. Vazquez JA, et al. Curr Med Res Opin. 2012;28:1921-31.

	Clinical Infectious Disease	s LE C. Goldstein, Section E	ditor	4D	SA hivmo	L COLLORD
Tab	Emerging Res No Tests! The Testing in the B. M. Humphies and J. A. Hindler Duarmer of Privacy and Lakeston Me	istance, Ne Challenge Current U tere. Bail Gatte School of Mede	ew Antin of Ant: US Regul	nicrobia imicrobi atory La na, tas Angeles	l Agents l al Susceptibil andscape	ms
Anti	microbial	Year Drug Approved by FDA	RUO Disk Available	RUO Etest Available	FDA-Cleared Test Available*	Surrogate Agent Available for Predicting Susceptibilit
Ceft	azidime-avibactam	2015	Yes	Yes	Sensititre ^b (in progress)	No
Ceft Ceft	azidime-avibactam iolozane-tazobactam	2015 2014	Yes Yes	Yes Yes	Sensititre ^b (in progress) Sensititre	No
Ceft Ceft Dalt	azidime-avibactam olozane-tazobactam xavancin	2015 2014 2014	Yes Yes No	Yes Yes No	Sensititre ^b (in progress) Sensititre Sensititre (in progress)	No No Vancomycin [14]
Ceff Ceff Dalb Orit	azidime-avibactam xolozane-tazobactam xavancin avancin	2015 2014 2014 2014	Yes Yes No No	Yes Yes No No	Sensititre ^b (in progress) Sensititre Sensititre (in progress) Sensititre	No No Vancomycin [14] Vancomycin [15]
Ceft Ceft Dalb Orit	azidime-avibactam iolozane-tazobactam savancin avancin wancin	2015 2014 2014 2014 2014 2014	Yes Yes No No Yes	Yes Yes No No Yes	Sensititre ^b (in progress) Sensititre Sensititre (in progress) Sensititre Sensititre	No No Vancomycin [14] Vancomycin [15] Vancomycin [16]
Ceft Ceft Dalt Orit Tele Tele	azidime-evibactam iolozane-tazobactam savancin avancin vancin zolid	2015 2014 2014 2014 2014 2014 2014	Yes Yes No No Yes No	Yes No No Yes No	Sensititre ^b (in progress) Sensititre Sensititre (in progress) Sensititre Sensititre Sensititre	No No Vancomycin [14] Vancomycin [15] Vancomycin [16] Linezolid [17]

Current Availability of Ceftolozane-Tazobactam Susceptibility Tests

Disks

- MAST Disk Distributed by Hardy Diagnostics, commercially available FDA approved diameters for:
 - Enterobacteriaceae: >21mm (S), 18-20mm (I), and <17mm (R),
 - P. aeruginosa: >21mm (S), 17-20mm (I), and <16mm (R),

Gradient Strips

- Breakpoints published in the package insert and latest CLSI M100 document
- Etest (Biomérieux) Research use only, Etests can be ordered from IHMA (http://mist-rug.com). Approval anticipated in June/July 2017. MIC fets trips (Lofitchem) C7 Itest strips can be ordered directly from Liolichem (http://www.liolichem.net/en/pdf/mic_brochure.pdf). Approved in US, Europe and Canada.
- Panels
- Vitek 2 (Biomérieux) card approved and will undergo beta-testing; anticipate commercial availability in May/June 2017, software updates started in March 2017 Microscan (Beckman Coulter) expect commercial availability in late 2017/2018
- Phoenix (BD) expect commercial availability late 2017/2018
- Trek Panel (ThermoFisher Scientific) commercially available since Q1 2016

and availability on April 18, 2017.

Current Availability of Ceftazidime-Avibactam Susceptibility Tests

Approved Tests

- KB Disks from Hardy Diagnostic and BD
- Custom Sensititre (ThemoFisher)

Tests in Development

- Etest RUO only available at www.avycazeval.com
- Etest expected approval Q3-4 2017

Automated Tests

- Vitek 2 Software validation Q1 2017, expected approval Q2 2018
- Phoenix FDA approved, but not available yet
 MicroScan Expected to be available mid 2018
- Status and availability on May 8, 2017.

Patient Case: Mr. Z (cont'd)

- Management plan:
 - Patient remains on imipenem 500 mg IV q6h

New information:

- After 2 days, patient remains febrile with positive urine and blood cultures
- C&S reveals *P. aeruginosa* with resistance to ceftazidime, pip/tazo, ciprofloxacin, and imipenem; susceptible to tobramycin and colistin

The Effect of Molecular Rapid Diagnostic Testing on Clinical Outcomes in Bloodstream Infections Meta-analysis

Thirty-one studies (n=5920 patients)

- Mortality significantly lower with mRDT than conventional micro (OR, 0.66; 95% CI, 0.54-0.80),
- Mortality risk mRDT in studies with AMS (OR, 0.64; 95% CI, 0.51-0.79),
 Non-ASP studies failed to demonstrate a significant decrease in
- mortality risk (0.72; .46-1.12)
- Significant decreases in mortality risk were observed with:
- Gram-positive (OR, 0.73; 95% CI, 0.55-0.97)
 - Gram-negative organisms (0.51; 0.33-0.78)
 - Yeast (0.90; 0.49-1.67)
- Time to effective therapy decreased (weighted mean difference) of 5.03 hours (95% CI, -8.60 to -1.45 hours)
- Length of stay decreased by 2.48 days (-3.90 to -1.06 days)

mRDT, molecular rapid diagnostic testing Timbrook TT. Clin Infect Dis. 2016;64(1):15-23.

Mystery Product Profile				
Indication	Treatment of C. difficile infection (CDI)			
Product description / Mechanism of action	It inhibits nucleic acid synthesis by binding to and disrupting the DNA of microbial cells; activity against anaerobic bacteria			
Pharmacokinetics / dynamics	Oral, 100% absorbed, re-excreted into colon when inflamed; C. difficile MIC ₅₀ =0.5 mcg/mL, MIC ₅₀ =2.0 mcg/mL; Stool concentration: 1.9–77.3 mcg/gm, 40% <10 mcg/gm, 30% <5 mcg/gm			
Efficacy (double- blind RCTs only)	Initial cure (vs. vancomycin): 72% (81%)* to 84% (97%)* Recurrence (vs. vancomycin): 23% (21%) to 14% (7%)			
Metabolism	Hepatic metabolites cleared in urine; inhibits CYP2C9 and CYP3A4, may interfere with medications metabolized by these enzymes (e.g. warfarin, tacrolimus)			
Common adverse reactions	Nausea (12%) sometimes accompanied by headache, anorexia, and occasionally vomiting; diarrhea; epigastric distress; and abdominal cramping			
Warnings	Convulsive seizures and peripheral neuropathy; contraindicated in first trimester of pregnancy			
RCT = randomized control	led trial *p<0.05			

C. difficile is an	"Urgent Thr	eat"	
Over 450,000 cases per year Over 29,000	Pathogen	All Health Care– Associated Infections (N=504)†	
associated deaths		no. (%)	ran
	Clostridium difficile	61 (12.1)	1
 Most common cause 	Staphylococcus aureus	54 (10.7)	2
of healthcare-	Klebsiella pneumoniae or K. oxytoca	50 (9.9)	3
	Escherichia coli	47 (9.3)	4
associated infections	Enterococcus species‡	44 (8.7)	5
in US	Pseudomonas aeruginosa	36 (7.1)	6
	Candida species§	32 (6.3)	7
	Streptococcus species	25 (5.0)	8
	Coagulase-negative staphylococcus species	24 (4.8)	9
Lessa CF, et al. N Engl J Med. 2015;372:825-34. Magill SS, et al. N Engl J Med. 2014:370:1198-1208	Enterobacter species	16 (3.2)	10

Antibiotics and CDI Risk				
Very Commonly Related	Less Commonly Related	Uncommonly Related		
Clindamycin Ampicillin Amoxicillin Cephalosporins Fluoroquinolones	Beta-lactam inhibitors Macrolides Carbapenems Tigecycline	Aminoglycosides Metronidazole Rifampin Tetracyclines Daptomycin Sulfonamides Trimethoprim		

CDI Treatment Stratified by Severity: First CDI Episode (2010 Guidelines)*

Clinical scenario	Supportive clinical data	Recommended treatment
Mild to moderate	Leukocytosis (WBC <15,000 cells/mL) or SCr level <1.5 × premorbid level	Metronidazole 500 mg 3 times per day PO for 10-14 days
Severe	Leukocytosis (WBC ≥15,000 cells/mL) or SCr level ≥1.5 × premorbid level	Vancomycin 125 mg 4 times per day PO for 10-14 days
Severe, complicated	Hypotension or shock, ileus, megacolon	Vancomycin 500 mg 4 times per day PO or by nasogastric tube <u>plus</u> metronidazole 500 mg IV q 8 hrs

Should Treatment of Initial CDI Focus on Recurrence Risk?

- If metronidazole is inferior for mild/moderate CDI, no need to select treatment based on CDI severity
- Major differentiators in currently available treatments
 - Impact of concomitant antibiotics
 - Recurrence

Risk Factors Associated with CDI Recurrence Findings from Selected Key Publications				
Increasing Age	Antibiotic Use	Past Hospital / Healthcare Exposure	Host Immunity/ Underlying Disease Severity	CDI Experience
Per 1 year increment	Systemic concomitant ab use or continued use of non <i>C.difficile</i> abs	2+ Hospitalizations in the previous 60 days	Antibody to C.difficile toxin Albumin >35/ 26-35 / <=25	CDI diagnosed at admission
>65 or advanced age	High risk antibiotic use at CDI onset	Total inpatient duration before admission* or long hospital stays	Horn's Index severe or fulminant	Stool frequency >3 unformed stools per day
60-69 70-79 >=80	Fluoroquinolone use at CDI onset	CO-HCFA (onset in community and discharged in last 12 weeks)	ER admittance + previous MRSA and previous dialysis or chemotherapy	Previous CDI diagnosis or CDI in the past 3 months
>40 years of age	Treatment with vancomycin (vs. fidaxomicin)	Previous gastrointestinal ward admission	ICU at CDI onset** Co-Morbidities: cardiovascular or liver disease,	C-reactive protein at the time of dx <35, 85-<160, >=160
		Inpatient vs. outpatient at CDI diagnosis**	upper GI abnormality** CCR ^{2***} at dx <80mL/minute	
* any past adm ** protective ag	aission, >2-13 weeks, >13 weeks ainst CDI recurrence **** creat	tinine clearance rate	Courtesy	S. Gupta (modified)

Recurrent CDI: 2010 IDSA/SHEA Guidelines*		
Clinical scenario	Recommended treatment	
First recurrence	Treat as first episode according to disease severity	
Second recurrence	Treat with oral vancomycin taper and/or pulse dosing	
Third recurrence	-SHEA/IDSA: challenging, consider FMT/rifaximin taper/IVIG -ACG**: FMT	
	FMT = fecal microbiota transplantation	
*Updated IDSA/SHEA C. difficile guideline: **Surawicz CM, et al. Am J Gastroenterol. Cohen SH, et al. Infect Control Hosp Epide	s expected in Summer 2017. 2013;108:478-98. <i>amiol.</i> 2010;31(5):431-455.	

	O'r ale dere	0
Study	Single dose	Second dose
oungster (n=20)	70%	90%
lirsch (n=19)	68%	89%
Drenstein (n=34)	52%	79%
Youngster (n=14)	70%	90%
Van Nood (n=16)	81%	94%
_ee (PP n=178, mITT n=219)	62% / 51%	84% / 73%
Khanna (n=30)*	87%	97%
Press release (n=59)*	56%	NA
Combined (n=371)	65% / 60%	

When the Cardiologists Start to Demand Bezlotoxumab...

- No difference in resolution of CDI – 80% bezlotoxumab vs. 80% placebo
- Caution with congestive heart failure
 - Serious adverse events
 - 15/118 (13%) bezlotoxumab vs. 5/104 (5%) placebo
 - Death
 - 23/118 (20%) bezlotoxumab vs. 13/104 (13%) placebo

ZINPLAVA™ (bezlotoxumab) Prescribing Information. Merck & Co., Inc. Whitehouse Station, NJ. October 2016.

Bezlotoxumab: 30-day Readmission

Data compiled from MODIFY I and MODIFY II comparing bezlotoxumab (BZO) or placebo, both with standard of care antibiotics.

	BZO n/N (%)	Placebo n/N (%)	Difference (95% CI)
30-day all-cause readmissions	123/530 (23.2)	140/520 (25.9)	-3.7% (-9.0, 1.5)
30-day CDI-associated readmissions	21/530 (4.0)	50/520 (9.6)	-5.7% (-8.8, -2.7)
Age ≥65 years	11/298 (3.7)	37/308 (12.0)	-8.3% (-12.6, -4.2)
CDI in prior 6 months	8/127 (6.3)	18/122 (14.8)	-8.5% (-16.6, -0.9)
Immunocompromised	5/131 (3.8)	9/112 (8.0)	-4.2% (-11.2, 1.8)
Severe CDI	2/113 (1.8)	12/116 (10.3)	-8.6% (-15.7, -2.7)
027 ribotype	7/87 (10.4)	14/81 (17.3)	-6.8% (-18.2, 4.9)

Golan Y, Dubberke ER, et al. Presented at ASM Microbe 2016, June 16-20, 2016, Boston, MA.. Abstract #MONDAY-449

Conclusions

- Risk of CDI and recurrent CDI related to:
 - Host (immune response)
 - Microbiome (antimicrobial exposures)
 - C. difficile strain
- Metronidazole IS no longer first-line treatment
 Treatment selection based on recurrence risk, not
- severity
- Current approach to prevent recurrence is with microbiome preservation / restoration
- Immune restoration approach now available

